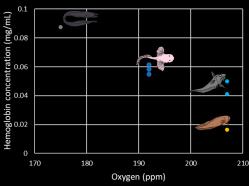
Hemoglobin content in bathyal, abyssal, and hadal fishes in relation to ambient oxygen levels

IMPORTANCE OF THIS STUDY

Rising sea surface temperatures result in less dissolved oxygen (O_2) , increasing the presence of O₂ minimum zones and therefore decreasing the amount of O₂ that ventilates through the deep sea via thermohaline circulation¹.

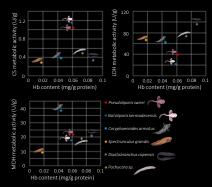
Abbey Dias¹ Mackenzie Gerringer² Michael Coronado¹

¹Whitman College Biology Dept. ²State University of New York at Geneseo Dept. Biology



Mariana and Kermadec trenches

RESEARCH QUESTION


How does ambient oxygen influence hemoglobin (Hb) in deep-sea fishes?

WHAT In areas of lower oxygen, species had higher amounts WE of hemoglobin in their blood FOUND

Sensors measured oxygen during collection⁶.

- Diastobranchus capensis
- Notoliparis kermadecer
- Coryphaenoides armatu Spectrunculus grandis

Hemoglobin content versus enzymatic

activity. Data on enzymatic activity from Gerringer, Drazen, and Yancey 2017⁵. A) Citrate synthase (CS) represents aerobic respiration. B) MDH is malate-dehydrogenase in aerobic respiration. C) LDH is lactate-dehydrogenase in anaerobic respiration. Enzymatic activity is measured in units (U) per gram (g) protein.

Animals that had lower hemoglobin levels had higher anaerobic enzymatic activity

DISCUSSION

If more hemoglobin allows for more efficient oxygen uptake from low-oxygen surroundings, is hemoglobin upregulated?

2 Lysed and purified cells using a modified RIPA buffer⁸

METHODS

G Cyanmethemoglobin test using Drabkin's reagent

(4) To account for blood clotting, total protein content was calculated using a BCA assay o normalize. Results are in

Species with less hemoglobin may rely more on anaerobic respiration, corresponding with a lower basal metabolic rate RFFFRFNCFS

¹Breitburg et al. 2018; ²Sherwood, L., Klandorf, H., Yancey, P.H. From Genes to Organisms. 2nd ed., Brooks/Cole 2013; ³Berg, J. M., Tymoczko, J.L., Stryer, L. Biochemistry. 5th ed., W.H. Freeman, 2015; 4Gallo and Levin 2016; 5Gerringer, Drazen, Yancey 2017; ⁶HADES project, NSF 2011-201 ⁷Jamieson, Newcastle University 2018; ⁸Falk et al. 1998; Hb and methods figures created with BioRender.com; fish illustrations by Abbey Dias

This project was funded by the Sally Ann Abshire Student Research Scholar Award, from Whitman College (2020)

Please direct questions to Abbey Dias at